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Abstract 0 A rigorously correct derivation is given for the time 
course of dissolution of powders that follow the log-normal prob- 
ability distribution. The exact expression, based on reasonable 
assumptions, requires no integration but can be evaluated by use of 
a calculator and readily available mathematics tables. The ap- 
proximations of earlier workers for the dissolution patterns of 
log-normal powders are tested against the exact equation. 
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Recently, Carstensen and Musa (1) presented ap- 
proximate dissolution patterns for powders obeying the 
log-normal distribution law. They, like earlier workers 
(2, 3), refrained from an exact treatment of this subject 
because the expressions involved tended to become 
"analytically unmanageable." Instead, Carstensen and 
Musa (1) used a computer to gain approximate numer- 
ical solutions of their complicated probability expres- 
sions. 

In this paper, a rigorously correct expression is de- 
rived for the dissolution profiles of log-normally dis- 
tributed powders. The exact expression for weight 
fraction undissolved with time can be evaluated by use 
of a calculator and a handbook of mathematics tables 
including the standardized normal probability distribu- 
tion. The calculations are tedious but can be accom- 
plished without the use of a computer. 

THEORETICAL 

Consider a powder containing spherical particles of diameters 
a. which are distributed, on a numbers basis. such that In uo is 
normal with population mean p and population standard devia- 
tion ~ 1 .  The probability frequency f of log diameters is given by: 

When particles are placed in a medium, the diameters diminish 
as dissolution proceeds. If it is assumed that the particles dissolve 
isotropically under sink conditions and that the solubility C, is 
independent of particle size, then the diameter a, of a particle at 
some function T of time is described (1) by: 

2kC. 
P, = a0 - --I = a0 - T 

P 

where a. is the initial (time = 0) diameter, k is a dissolution rate 
constant, r is time, and p is particle density. Here the function T 

of time is 2kC.r/p, which is essentially the notation of Carstensen and 

'The symbols p and u in this paper have the sense of population 
parameters. Since the normal variable. In UO, is in (natural) logarithmic 
terms, so must be p and u. This is different from Reference I where the 
standard deviation is in common log terms. Since the distribution is 
log-normal, then the populatlon mean p is equivalent to the natural log 
of the geometric mean diameter. 

Musa (1). Obviously, the diameter is linear with time. The func- 
tion T has dimensions of length. 

If the total number of particles in the powder is N, then the 
number dN of particles of initial diameter a. is given by: 

d N  = Nfd In a. 0% 3) 
Initially, the contribution dw of particles of diameter uo to the 

total weight of the powder is the weight of one particle times the 
number in that cut or rpu0:dN/6. As dissolution continues, the 
diameters of particles decrease; but as long as ar > 0, the number of 
particles in that cut remains the same. Thus, the contribution to 
the total weight after some time such that 0 < T < a. is: 

dw = %adN = ?(ao - T)aNfd In a. (Eq. 4) 6 

The weight of undissolved solid at T is given by an integration 
of Eq. 4 for all remaining particles. The integration is in terms of 
initial diameters, since the numbers of particles were described 
on that basis. The lower limit of integration is rationalized by the 
fact that at any value of T the smallest remaining particles (ao - 
r -. 0) were initially of size a. = T .  Therefore, the weight w ,  is: 

h a a - -  

In aa==ln r 
wr = $ y ( u o  - T)aNfd In a. (Eq. 5 )  

For purposes of integration, T is a constant, 

comes: 

w, = r J n m , d f d  In a. - 3rr lnrnp.' f d  In a0 + 

By expanding the cubic term and letting r = irpN/6, Eq. 5 be- 

m 

3rr2 Jna a0 fdln uo - ria In {din a. (Eq. 6) 

When considering any of the four integrals in Eq. 6 ,  let there be a 

I 

number fi  (fi  = 0 , 1 , 2 , 3 )  such that: 

It is convenient to express aoB as e@ and then to manipulate 
the resulting integral in much the same manner as is done when 
developing the moment generating function for the normal dis- 
tribution (4). First, the powers of e in the integral are collected so 
that: 

Bln a. - -7- - (In a. - rY - - [In* a0 - 2(r + Boa) In ad + p* 
2.9 20 

(Eq. 8) 

By completing the square of the bracketed part of Eq. 8, that is, 
by adding and subtracting ( p  + bu*)), and collecting terms, the 
exponent of e becomes: 

and Ig becomes.: 

The new integral in Eq. 9 is that of a random variable (In ao) 
which is normally distributed with mean ( p  + flu*) and standard 
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Table I-Dissolution Patterns for Log-Normal Powders with a 
Geometric Mean of 40 pm. (p = 3.68888) as Calculated 
from Eq. 13 for Exact and for Truncated (at p + 3u) 
Distributions 

Percent 
Calculated Weight Fraction Rela- 

Remaining-- tive 
7 Exact Truncated Errora 

u = 0.03178 

u = 0 . 1 m  

u =  0.uw)Oo 

u = 0.50000 

u - 1.08304 

0 
5 

10 
15 
20 
25 
30 
36.3qr.Y 
0 

10 
20 
29.6Yre) 
30 
35 
0 
5 

10 
16.26(r0) 
25 
40 
0 
8.9Yrc) 

10 
20 
40 
80 
0 
1 .5Yr.) 
40 
80 

120 
200 
280 
350 

1 .m 
0.6707 
0.4231 
0.2455 
0.1263 
0.0538 
0.0164 
0.0010 
1 .m 
0.4337 
0.1381 
0.0255 
0.0234 
0.0063 
1 .m 
0.7320 
0.5215 
0.3213 
0.1575 
0.0372 
1 .m 
0.6929 
0.6625 
0.4326 
0.1831 
0.0361 
1 .m 
0.9938 
0.8632 
0.7594 
0.6769 
0.5529 
0.4634 
0.4034 

1 .oooo 
0.6707 
0.4231 
0.2455 
0.1263 
0.0538 
0.0165 
0.0010 
1 .m 
0.4333 
0.1376 
0,0254 
0.0233 
0.0059 
1 .m 
0.7294 
0.5173 
0.3221 
0.1521 
0.0330 
1 .m 
0.6793 
0.6476 
0.4097 
0.1567 
0.0195 
1 .m 
0.9877 
0.7380 
0.5543 
0.4201 
0.2438 
0.1404 
0.0842 

- 
- 
- 
- - - 
- 
- 
- 
0.1 
0.4 
0.4 
0.4 
6.4 

0 .4  
0.8 
1 . 3  
3.4 

1 1 . 3  

1 .o 
2 . 3  
5 . 3  

14.4 
46.0 

0.6 
14.5 
28.9 
38.0 
58.4 
69.8 
79.2 

- 

- 

- 

a Percent relative error = (exact - trun?ted)/exact x 100. * T~ refers 
to the value of T equivalent to a diameter given by In a0 = ~r - 3 ~ .  

deviation u. If x = [In a0 - ( p  + ~ u ' ) Y o  and dx = d In a&, then 
Eq. 9 can be changed to: 

which can be evaluated by use of tables of the standard normal 
distribution. If: 

where F{[ln T - ( p  + fh*)l/o] is a tabled value. 

dissolved, Eq. 6, becomes: 
The exact and rigorously correct expression for the weight un- 

it* (1 - F r-3) (Eq. 13) 
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F l g w  I-Dissolution pattern for a log-normal powder with a geo- 
metric mean diameter of 40 pn. The population parameters were p = 
3.68888 and u = 0.03178. The sdid line was calculated from Eq. 
13. The circles are the Carstensen and Musa ( I )  estimates for thls 
distribution as reported in their Table II. 

It is clear that an expression of weight fraction undissolved, 
wt/wo, is a function only of T ,  p, and u. 

RESULTS AND DISCUSSION 

The dissolution profiles for five log-normally distributed "pow- 
ders" were treated for this paper using an electronic programmable 
calculatorz. In each case the powder was assigned a geometric 
mean diameter of 40 pm. ( p  = 3.68888). Standard deviations were 
chosen so that the distributions ranged from rather narrow to 
very broad. A dissolution pattern, as calculated from Eq. 13, for 
a powder with u = 0.03178 is shown in Fig. 1 .  Such a powder 
would have 99.74x of its particles in the range 36.3644.00 pm. 
This is perhaps a narrower distribution than could beexpected 
for most pharmaceutical powders. 

The distribution treated in Fig. 1 is the same one treated by 
Carstensen and Musa ( I )  by computer techniques and reported in 
their Table 11. The circles in Fig. 1 are the values of Carstensen and 
Musa. The excellence of their approximations is obvious. 

Carstensen and Musa assumed a powder containing no parti- 
cles outside of a range within 3 standard deviations from the 
mean. In practical situations it is probable that many (or even 
most) actual powders follow truncated distributions. If this be the 
case, then it is possible that using an ideal (as opposed to trun- 
cated) log-normal distribution for actual powders could lead to 
errors in the calculated dissolution profile. Conversely, when deal- 
ing with a powder that is "ideally" log-normal, arbitrary trunca- 
tion for the convenience of computer fitting could lead to errors. 
Whether or not significant errors occur because of these considera- 
tions depends upon the parameters ( p  and a) of the distribution. 
More specifically, the larger the value of the standard deviation u, 
the more chance that application of the exact equation (Eq. 13) to 
a truncated distribution will lead to  errors. The converse is also 
true. 

Let it be assumed that there is a powder that follows a truncated 
log-normal numbers distribution, with the smallest particle given 
by In a0 = In rC = p - cu and the largest particle given by p + 
cu, where c is a constant. Use of the ideal log-normal distribution 

'Monroe 1665. 
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Table II-Dissolution Patterns as Calculated Exactly by Eq. 13, 
as Calculated by the Carstensen and Musa (1) Approximation 
with a Knowledge of Weight Fraction at T * ,  and as Calculated 
by the Carstensen and Musa (1) Approximation by Assuming the 
Weight Fraction to be Zero at 

Weight Fraction Remaining 
d a l c u l a t e d  by- 

Carstensen and 
Musa 

-Approximation- 
Using Assume 

Known Weight 
Weight Frac- 

Exact Fraction tion 
7 Equation at T *  0 at iC 

u = 0.03178 0 l.m l.m l.m 
p = 3.68888 5 0.6707 0.6728 0.6416 

10 0.4231 0.4261 0.3810 
15 0.2455 0.2485 0.2027 
m 0.1263 0.1288 0.0911 
25 0.0538 0.0554 0.0350 
30 0.0164 0.0171 0.0054 
36.361,,1* 0.0010 0.0010 0 

0 = 0 . 1 m  0 l.m l.m 1.0000 
p = 3.68888 10 0.4337 0.4424 0.2909 

20 0.1381 0.1438 0.0344 
29.63ic,1* 0.0255 0.0256 0 

0 = 0 . 3 m  0 l.m l.m l.m 
p = 3.68888 5 0.7320 0.7398 0.3321 

10 0.5215 0.5295 0.0571 
l6.261,,1+ 0.3273 0.3274 0 
25 
40 0.0372 0.0130 

0.1575 0.1424 - 

u = 1.08304 0 l.m l.m - 
p = 3.68888 40 0.8632 0,8962 - 

0.7594 0.8000 - 
0.6769 0.7108 

200 I*  0.5529 0.5529 
280 0.4634 0.4203 - 
350 0.4034 0.3232 - 

- 

- 
80 

- 
im 

for this case has the effect of erroneously adding a few larger 
particles and a few smaller particles than actually exist. If c = 3, 
the number of particles added to each end represents only 0.13x 
of the total number of particles in the powder. However, it is not 
the small number of particles wrongly added that should cause 
worry-it is the weight that they represent. 

If there is a log-normal distribution on a numbers basis with mean 
p and standard deviation u, then, by the Hatch and Choate equa- 
tions (9, the distribution of particles on a weight basis is log-normal 
with mean ( p  + 309 and standard deviation u. Let z be the standard 
normal variable for the weight distribution. Thus: 

In a0 - ( p  + 3 d )  
z =  

U 

If the lower limit of particle sizes is In a. = In iC = p - cu for the 
numbers distribution, then for the weight distribution the limiting 
z is: 

Thus the weight wrongly added to the small end by using the ideal 
log-normal where the truncated distribution should have been 
used can be calculated. If c = 3, the error corresponds to no more 
than about 0.13% of the actual weight. Even if c = 2, the error is 
still less than about 2.27x of the actual weight. Thus it can be 
assumed that truncating (or not truncating) at the small end of the 
distribution will rarely lead to significant errors in calculated pro- 
files. 

At the large end, if the largest particle is given by In a. = p + 
cu, then: 

If u were vanishingly small, the errors involved would be relatively 
smallfor c = 2,3,. . . . But if c = 3 and (say) u = 1, then the standard 

75 

c 
5 z 
w a 

25 

0 80 160 240 

Figure 2-Plot showing the effect of truncating the log-normal dis- 
tribution at p + co on the calculated dissolution patterns where c 
= 2, 3, 4, or m. The distribution parameters are p = 3.68888 and 
u = 1.08304. 

T 

normal variable z would be zero. The effect would be the erroneous 
addition of a weight of particles equal to the actual weight of the 
powder. The resulting errors in the calculated profile would be 
great. 

The exact equation (Eq. 13) that was developed for an ideally 
log-normally distributed powder can be altered to take into account 
a truncation at the upper end of the distribution at p + cu. This 
simply involves changing the integral terms IB so that: 

(Eq. 17) 

It is now clear that the dissolution profile calculated exactly 
and shown in Fig. 1 excellently reflects the results of the Carsten- 
sen and Musa (1) approximation, because the standard deviation 
was vanishingly small. 

The effect of arbitrarily truncating at p + 3u when dealing with a 
number of exact distributions that vary only as to standard devia- 
tion is shown in Table I. The effect of truncating an ideal l o g  
normal distribution at various upper limits is shown in Fig. 2. 

The standard deviations of the particle distributions treated by 
Carstensen and Musa (1) are all small, and any truncating effects 
would be negligible. Actually, the dissolution of powders of the 
distributions treated by those authors was essentially complete 
before the smallest particles in those distributions began to dis- 
appear. Their smallest particles were assigned by In zc = - 30, 
where ie was the diameter of the smallest particle considered. The 
calculations in Table I show that for u = 0.03178, 99.9% of the 
weight had disappeared before iC was reached. For u = 0.1,97.45% 
of the weight had dissolved before ie was reached. If such were 
always the case, i.e., if u were vanishingly small when compared 
with the mean, Eq. 13 could be changed to: 
W , ( ~ + O )  = re3(r+3ua/2) - r7e2G+ua) + 

r7ze0.+u2/2) - r ~ 3  (Eq. 18) 

because the (1 - F) terms are essentially unity through most of 
the dissolution profile. However, it seems likely that powders like 
that of Table I, with p = 3.68888 and u = 0.3000, will often be 
encountered in pharmacy so that calculations by Eq. 13 will be 
required for precision. 

Carstensen and Musa (1) developed equations to approximate 
the dissolution patterns. Their Eq. 8 was offered to approximate 
the dissolution time course before T = ice That equation in terms 

Vol. 62, No. 5, May 1973 797 



of the notation used in this report was: 

where M is the geometric mean diameter of the distribution and the 
sense of a is obvious. This equation, rearranged to give: 

wdwo = [I - (a/wo’/abl’ (Eq. 20) 
was tested for its fidelity. This was done by calculating a and then 
finding a value for wol/a by plugging in a point T * ,  W,*/WO from the 
exactly calculated profile. Then the entire dissolution pattern was 
calculated from Eq. 20 and compared with the exactly calculated 
values. These comparisons are shown in Table I1 for several dif- 
ferent powder distributions. The point T * ,  w,*/wo is indicated in 
Table 11. For standard deviations that are small or of moderate 
size, the approximation of Carstensen and Musa as rearranged in 
Eq. 20 gives excellent values when compared with the precise dis- 
solution curve even for values 7 > T ~ .  For large u, the approxima- 
tion is not quite as good. In those distributions where dissolution 
is essentially complete before T = T ~ ,  Eq. 20 can be employed with- 
out a knowledge of the exact profile. The initial condition can be 
set by (w,/wo) = 0 at T = T ~ .  This works well for the distribution 
where only 0.1 % of the initial weight remains at 7. It does not work 
well for the distribution where 2.56% of the weight remains at 7s 

oable  11). 
The growing importance of dissolution rate technology in 

pharmacy, coupled with the fact that many powders follow the log- 
normal distribution law, should lend importance to the exact 
equation derived here. In practical terms, however, the use of the 
exact equation for the dissolution of log-normal powders requires 
a knowledge of population parameters, solubility, and dissolution 
rate constant, none of which may be readily available. The popula- 

tion parameters found may depend on the method of measurement. 
The solubility of the smallest particles should be greater than that 
of the largest particles. Few powders are composed of spherical 
particles that dissolve isotropically. And, finally, it would un- 
doubtedly be difficult to design a dissolution rate experiment in 
which the agitation and, therefore, the diffusion barrier were the 
same for the entire surface of each particle and for every particle. 
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Chronic Isoproterenol Treatment of Mice: 
Effects on Catecholamines and Rectal Temperature 

GERDA I. KLINGMAN’, GENIE McKAY, ALLEN WARD*, and LUANA MORSEt 

Abstract IJ The chronic administration of isoproterenol(5 mg./kg. 
twice a day) to male and female mice resulted in increased wet 
weights and tissue weight-body weight ratios of the submaxillary 
and parotid glands. For the heart the ratio was elevated in male 
but not in female mice. The first dose of isoproterenol produced a 
decrease in the rectal temperature. Continuation of the treatment 
led to hyperthermia, which became maximum after treatment for 
longer than 10 days (20 doses). In these animals the predose rectal 
temperatures were lower than the pretreatment control values and 
the temperatures of control animals. A smaller, single dose (2.5 
mg./kg.) did not alter the rectal temperature. The norepinephrine 
concentrations of the parotid and submaxillary glands were reduced 
in male and female mice, but the total norepinephrine content of 
these glands was decreased only in male mice. The cardiac nor- 
epinephrine levels were not affected. Chronically treated animals 
were less active than controls for about 90 min. after dosing and 
showed rarification of fur and hair loss. Isoproterenol treatment of 
dams before, during, and after pregnancy did not alter the body 
weight, gross appearance, and wet weight of organs and tissues of 
pups examined on the 3rd postnatal day. 

Key phrases IJ Isoproterenol-effect on catecholamines and rectal 
temperature after chronic administration, mice IJ Catecholamine 
concentration-effect of chronic isoproterenol administration, mice 

A number of investigators have reported physio- 
logical and pathological changes in various species 

following acute and chronic isoproterenol treatment 
(1-14). Depending on the species and duration of treat- 
ment, the reported effects have included hypertrophy 
and hyperplasia of the submaxillary and parotid glands, 
infarct-like lesions and fatty degeneration of the heart, 
growth stunting, premature opening of the eyes, sparse 
hair growth, prostration, lethargy, and changes in rectal 
temperature, norepinephrine levels, and wet weights 
of several peripheral tissues. 

To gain a better understanding of the mode of action 
of isoproterenol, we investigated several effects of 
chronic treatment in mice, a species in which this drug 
has not been studied in detail. The factors studied in- 
cluded the wet weights and norepinephrine levels of 
several tissues and organs and the effects of acute and 
chronic administration on the rectal temperature. 

METHODS 

Animals-In one study, 16 adult male Swiss Webster mice were 
injected subcutaneously twice a day, except Sundays, with 5 mg./kg. 
isoproterenol hydrochloride and another 16 mice were injected 
with 0.85% sodium chloride solution for 15, 23, and 31 days. The 
animals were sacrificed by exsanguination under sodium pento- 
barbital anesthesia. Whole brain (minus the cerebellum) or brain- 
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